Ocultación de la estrella Aldebarán por la Luna el 28 de abril.

Este viernes (28 de abril) va a suceder un curioso fenómeno astronómico: la ocultación de la estrella Aldebarán (la más brillante de la constelación de Tauro) por la Luna.

El fenómeno va a suceder por la tarde, y con la Luna en una fase creciente muy, muy fina. Éstos son los datos del fenómeno (referidos a Pamplona):

La desaparición de la estrella tras el borde de la Luna va a tener lugar a las 20:19 (hora local). La estrella se ocultará por el borde oscuro de la Luna, como se ve en esta ilustración. La mala noticia es que en ese momento todavía será de día (el Sol se pone a las 21h), por lo que el fenómeno va a ser prácticamente inobservable (en todo caso habría que emplear un telescopio).

Aldebarán en el momento de ser ocultada por la Luna.

 

La reaparición tiene lugar una hora después: a las 21:19 (hora local). Aldebarán reaparece por el borde iluminado de la Luna.  En ese momento el cielo todavía estará muy iluminado por la luz del ocaso (el Sol se habrá puesto unos 20 minutos antes), así que la reaparición no podrá apreciarse a simple vista. No obstante, sí podremos verla con prismáticos. Y con un telescopio también, por supuesto.

Aldebarán apareciendo por el borde iluminado de la Luna.

En definitiva: por las condiciones de luminosidad del cielo, ésta no va a ser la mejor ocultación Luna-Aldebarán que podamos observar, ni mucho menos. Pero, aún así, si tenemos unos prismáticos o pequeño telescopio, merecerá la pena observar el momento de la reaparición de la estrella, que siempre es un fenómeno bonito y fascinante.

Venus, Marte… ¡y conjunción Marte-Urano el 26 de febrero!

Los planetas Venus y Marte llaman nuestra atención estos días al comienzo de la noche. ¡Pero prestemos atención también a la conjunción Marte-Urano del 26 de febrero!

El brillantísimo Venus.

 

Llevamos ya varios meses contemplando, en los atardeceres y en el comienzo de la noche, al brillantísimo planeta Venus sobre el horizonte oeste, sorprendiéndonos y maravillándonos con su potentísima luz.

Su brillo es tan potente (magnitud -4,5 estos días), que no pasa desapercibido por nadie. De hecho, es el astro más brillante del cielo si exceptuamos el Sol y la Luna. Es tan brillante que incluso puede verse a plena luz del día; si sabemos donde mirar, claro.

El brillantísimo Venus en el comienzo de la noche.

En las próximas semanas vamos a seguir disfrutando de su presencia y de su espectacular brillo sobre el horizonte oeste, si bien cada día lo vamos a ver un poco más cercano al Sol y dejaremos de verlo, por su excesiva proximidad al Sol, a finales de marzo (conjunción con el Sol el 25 de marzo). A partir de entonces pasará a verse por las mañanas antes del amanecer.

 

Cerca de él, Marte.

 

Lo que quizás nos haya pasado más desapercibido, por su menor brillo, es el planeta Marte, que estos días se encuentra en el cielo muy cerca de Venus.

El brillo de Marte (estos días en torno a la magnitud 1,3) es más que suficiente para ser visto incluso con la contaminación luminosa de las ciudades, pero palidece – y por eso quizás nos pasa desapercibido- en comparación con el del brillantísimo Venus.

El brillante Venus. Y más débil (encima de él y a su izquierda) el planeta Marte.

 

La conjunción Marte-Urano:

 

A finales de febrero va a tener lugar un curioso fenómeno astronómico: una conjunción entre los planetas Marte y Urano. El día del máximo acercamiento (el 26 de febrero) ambos planetas van a estar a una distancia visual de tan solo 0,6º.

La mejor hora para contemplar esta conjunción será recién oscurecido el cielo (hacia las ocho de la tarde puede estar bien), pues más tarde los dos planetas irán perdiendo altura sobre el horizonte.

Eso sí, Urano posee un brillo muy bajo (en torno a la magnitud 5,8), así que no se ve a simple vista. Para verlo habrá que usar por lo menos unos prismáticos.

Deberemos mirar, pues, con los prismáticos, al planeta Marte, y, a partir de él, localizar a Urano.

A continuación pongo unos dibujos donde vemos la posición que van a tener Marte y Urano en los días de esta conjunción (del 24 al 28 de febrero) a las ocho de la tarde:

Venus y Marte a simple vista el 24 de febrero. El cuadrado rojo corresponde, aproximadamente, a los dibujos de abajo; donde debemos mirar con primáticos para ver a Urano.

Día 24. Urano a aproximadamente 1,5º de Marte.

Día 25. Urano se habrá acercado un poco más a Marte. Aproximadamente a 1º.

Día 26. ¡El máximo acercamiento! Urano y Marte a sólo 0,6º de distancia.

Día 27. Marte y Urano ya han comenzado a separarse. La distancia es de aproximadamente 1º.

Día 28. Continúan separándose. La distancia es ya de 1,5º.

En definitiva, estos días estaremos pendientes de esta conjunción. Urano es un planeta al que, por su escaso brillo, pocas veces miramos, así que este acercamiento al planeta Marte va a ser una ocasión ideal para localizarlo con facilidad en el cielo.

¡Te animamos a observarlo!

La solución a nuestro juego “busca la superluna del 2017”

¿Te animaste a buscar la superluna en el juego que te propusimos el pasado día 10? (aqui)

Si quieres ver el video otra vez, puedes hacerlo antes de que te digamos la solución.

Este año nos dirán que la luna llena del 3 de diciembre es una superluna. Y sí, será la luna llena que presentará un mayor tamaño aparente en el cielo de las 12 lunas llenas del 2017. El 3 de diciembre la Luna estará a unos 358 mil kilómetros de nosotros, comparados con los 412 mil kilómetros de la luna llena del 9 de junio, la superminiluna de este año 😉

Por si tienes curiosidad, aquí están, representadas a escala, todas y cada una de las lunas llenas del 2017.

Las lunas llenas del 2017

¿Así más fácil no?

En el video habíamos cambiado el orden, para añadir un poco de tensión dramática. La solución, la que aparecía con el número 7.

Si quieres ejercitar tu ojo una vez más. ¿Cuál es la “superminiluna” del 2017? ¿Cuál es la luna llena de menor tamaño aparente en el cielo este año?

Buscala en el video, en breve la solución estará en nuestro twitter @ANAstronomia.

Un saludo

 

.

Busca la superluna… si te atreves

El próximo 12 de enero, exactamente a las 11:34 TU (*) o si preferimos, a las 12:34 hora local en España, la Luna alcanzará oficialmente la fase de luna llena. Los almanaques y efemérides astronómicas pueden darnos este dato con gran precisión, al segundo si queremos.

Para el observador que suele utilizar los ojos para mirar al cielo, el momento exacto en que se produce la luna llena es menos importante. Seguramente tanto la noche anterior como la noche posterior la luna nos parecerá prácticamente igual de “llena”.

Esta va a ser la primera de las 12 lunas llenas que veremos en 2017. Como ya explicamos en su momento (aqui) dependiendo de la posición de la Luna en su órbita, su tamaño aparente cambia ligeramente. Cuando el plenilunio coincide con el perigeo o cerca de él, la Luna está más cerca de la Tierra y parece mayor…. la superluna.

Vale, vale, todo esto está muy bien. Seguro que el día de la superluna todo el mundo mira al cielo y la ve enoooooormeeeee. ¡Pues menudo soy yo echando tamaños a ojo!

Os proponemos un juego ¿realmente somos capaces de identificar claramente la superluna? ¿tan fácil es?

El juego, … en este video

¿Fácil?

Un saludo

(*) TU: Tiempo Universal

¡Marte se acerca a la estrella Antares!

 

Si estos días has mirado al cielo a primeras horas de la noche, habrás visto, brillando a no mucha altura sobre el horizonte suroeste, un llamativo trío formado por los planetas Marte y Saturno y la estrella Antares.

Estos tres astros han estado formando en estas noches de agosto un triángulo muy brillante en el cielo.

Como muestra, esta fotografía que hice este jueves (18-08-2016) desde Pamplona:

En ella vemos el triángulo Marte-Saturno-Antares. Y, además, en la imagen de abajo he marcado la constelación del Escorpión.

P1100591

El triángulo formado por Marte, Saturno y Antares.

P1100591D

La constelación del Escorpión.

De los tres astros que forman el triángulo, Marte es el más brillante. Y tiene un color rojo muy evidente (motivo por el cual se le conoce como “el planeta rojo”).
Saturno y Antares tienen brillos similares. Pero Saturno tiene una tonalidad amarillenta, mientras que Antares, la estrella más brillante de la constelación del Escorpión, es una estrella supergigante roja y la vemos con un evidente color rojizo.

Pero -¡ojo!-, este triángulo Marte-Saturno-Antares no va estar así siempre.

Como sabes, los planetas tienen movimientos propios; es decir, se mueven en el cielo respecto al fondo de estrellas. Por lo tanto, la posición relativa de Saturno y de Marte respecto a las estrellas está continuamente cambiando.

El movimiento aparente de Saturno es muy lento, pero el de Marte es bastante rápido. Tanto es así, que su desplazamiento va a ser perceptible a simple vista en pocos días.

… y, como consecuencia, el triángulo Marte-Saturno-Antares, que ahora vemos, va a ir cambiando de forma en los próximos días.

En estos dibujos de abajo os muestro cómo podremos ver estos astros en los próximos días (las imágenes están sacadas del programa Stellarium):

01 domingo 21

La noche del domingo día 21.

02 lunes 22

La noche del lunes 22. Obsérvese que Marte se va acercando a Antares.

03 martes 23

La noche del martes 23.

04 miercoles 24

La noche del miércoles 24.  Es el máximo acercamiento Marte-Antares.

05 jueves 25

La noche del jueves 25. Marte se empieza a separar de Antares.

06 viernes 26

La noche del viernes 26.

07 sabado 27

La noche del sábado 27.

 

Como ves, estos días Marte se va a acercar mucho (visualmente hablando) a la estrella Antares. Se va a acercar noche tras noche, hasta que el máximo acercamiento sea el día 24. Esa noche la distancia Marte-Antares será de algo menos de 2º de arco.

Y luego, a partir del día 24, comenzarán a separarse.

Se trata, pues, de un bonito espectáculo que no nos podemos perder, y que podremos seguir noche a noche sin ayuda de ningún instrumento óptico. Tenemos que mirar hacia el suroeste, a no mucha altura sobre el horizonte, en el comienzo de la noche (a ser posible en la primera hora; antes de que estos astros pierdan altura y se pongan por el oeste).

Será un bonito espectáculo observar a Marte y Antares tan juntos en el cielo. Marte tendrá un brillo bastante superior a Antares, pero lo que más llamará la atención será esa cualidad que es común a ambos: su color rojizo.

Ya hemos dicho que el color rojo de Marte se aprecia a simple vista, y que por este motivo se le conoce como “el planeta rojo”. Y es más: debido a este color (que se relaciona con la sangre, el fuego…), en la Antigüedad a este planeta se le identificaba con el dios de la guerra (el dios Marte); y de ahí viene su nombre, que aún conserva.

Respecto a Antares, la estrella supergigante roja del Escorpión, también su nombre se debe a su color rojo, pues el nombre “Antares” tiene su origen en “anti-Ares”, que significa “el rival de Marte” (pues el dios griego Ares es el Marte romano).

Es decir, que en los próximos días vamos a poder contemplar el encuentro cercano entre estos dos astros que rivalizan en su color rojo. Será una buena ocasión, no sólo para observar sus colores, sino también para compararlos con el color (amarillento) del cercano Saturno.

Además, podremos fijarnos en otra cosa: Una cualidad de los planetas, al verlos a simple vista en el cielo, es que no titilan (al contrario que las estrellas, que sí lo hacen). Así que estos días podremos ver cómo Antares, por ser estrella, sí titila; mientras que Marte y Saturno, por ser planetas, tienen una luz fija.

En definitiva, no podemos perdernos en los próximos días este magnífico fenómeno astronómico, visualmente tan interesante y atractivo.

Además, en los días de máximo acercamiento parece que se esperan cielos despejados en Navarra, así que podremos contemplar este fenómeno.

¡No te lo pierdas!

Entretanto, te dejamos con esta recreación artística del fenómeno, y te enviamos un cordial saludo.
🙂

marte y antares dibujo

Perseidas 2016. ¿Más espectaculares que otros años?

Al menos eso dicen algunas predicciones. Y nosotros, qué vamos a decir, nos gustaría que fuera así. Pero cuando se trata de predicciones sobre lluvias de estrellas fugaces, hay que ir con cautela.

El “padre” de las estrellas fugaces que denominamos Perseidas es el cometa Swift-Tuttle. Un cometa de unos 26 km de diámetro que cada 133 años aproximadamente se acerca al Sol, cruzando la órbita terrestre y dejando en su camino una infinidad de partículas, literalmente desmigadas de su superficie.

Esas partículas tambien orbitan el Sol, pero debido a que se desprenden con una pequeña velocidad, acaban formando una nube muy alargada y dispersa, alrededor de la órbita del cometa. A esta nube muchas veces se le llama “tubo”. Cada paso del cometa cerca del Sol deja un tubo.

Cuando la Tierra, al moverse en su órbita, cruza uno de esos tubos, las partículas que lo forman entran en la atmósfera. Debido a su velocidad, la fricción con el aire las quema y dejan un brillante y “fugaz” trazo en el cielo y unos cuantos “Ohhhhs” y “Ahhhhs” en los afortunados observadores (Que no es poco éxito si tenemos en cuenta que su tamaño oscila entre el del grano de arena y el del garbanzo)

Todas estas partículas entran en la atmósfera en la misma dirección, pero por un efecto de perspectiva parecen surgir de un único lugar del cielo. Este “punto” se denomina radiante y en el caso de las Perseidas se encuentra en la constelación de Perseo, de ahí el nombre de esta lluvia de estrellas (muy conocida también como las lágrimas de San Lorenzo)

El radiante de las Perseidas está en la constelación de Perseo

El radiante de las Perseidas está en la constelación de Perseo

La actividad de una lluvia de estrellas fugaces se mide mediante un parametro denominado Tasa Horaria Zenital (THZ) que nos indica el número de meteoros (estrellas fugaces) por hora que veríamos si el radiante estuviese localizado en el Zenit (Cenit), es decir, si tuviéramos el radiante justo en la vertical sobre nuestras cabezas.

El THZ depende de la cantidad de partículas en el “tubo” pero también de la posición del radiante respecto del observador. La posición cenital del radiante es la más favorable para la observación. En cambio, si el radiante esta próximo al horizonte  muchos  meteoros serán invisibles para nosotros, ocultos bajo el horizonte.

Las Perseidas suelen tener un THZ de unos 100 meteoros/hora. En nuestras latitudes el radiante no es cenital. Además una persona no puede observar todo el cielo al mismo tiempo, así que normalmente veremos muchas menos. En la figura se muestra la evolución del THZ en las Perseidas de 2015 donde la posición del máximo es claramente visible.

Evolución de la tasa horaria cenital (THZ) en las Perseidas de 2015

Evolución de la tasa horaria cenital (THZ) en las Perseidas de 2015 (Fuente, IMO)

Y esto nos lleva al asunto principal, las predicciones para este 2016…

Tenemos siempre la idea de que los cuerpos celestes repiten sus órbitas como relojes de precisión, pero no es así.  Los cuerpos pequeños, como cometas, asteroides y también las partículas que forman estos tubos, están sujetos a las continuas perturbaciones gravitatorias de otros cuerpos del Sistema Solar, en especial de Júpiter. Eso hace que los tubos de partículas puedan alterar sus órbitas cuando Júpiter, u otro planeta, les incordia con su presencia.

Pues bien, los expertos en el tema (osea, los frikis de las fugaces) han calculado que la influencia gravitatoria de Júpiter ha modificado las trayectorias de los tubos de partículas que dejó el Swift-Tuttle en los años 1079, 1479 y 1862, acercandolos a la órbita terrestre. Por este motivo se espera una densidad mayor de partículas y, por tanto, un número mayor de estrellas fugaces.

Bien, bien,… pero ¿cuántas?.  Aquí los frikis de las fugaces tienen opiniones diversas, pero todos coinciden en que este año el THZ será mayor. Unos dicen 120, otros 150 y algunos se aventuran a los 200 meteoros por hora. Alguno incluso más….

Pero son predicciones, y son difíciles de hacer. Esperemos que tengan razón y el espectáculo este año sea bueno. Las predicciones sitúan el máximo de actividad bien entrada la noche del 11 al 12 de agosto, pero conviene saber que ya las tenemos aquí hace días,  si bien con menor intensidad. Si queremos verlas, será mejor que busquemos un sitio oscuro, lejos de la ciudad. La luz de la Luna, en cuarto creciente, puede molestar un poco hasta que se oculte. Nuestro consejo: Tumbados en el suelo, sobre una colchoneta y bien abrigados…y a ser posible en grupo, que es más divertido.

Y si uno quiere pedir deseos, ¿porqué no? Yo cuando veo una bien gorda siempre pienso… ¡A ver si la siguiente es mejor! 

 

 

.

¡Bah, ya veré el tránsito de Mercurio otro año…! ¡ERROOOR!

¿Estas pensando en pasar del tránsito de Mercurio el 9 de mayo de 2016? ¿Quizás dejarlo para la próxima vez? No es buena idea, mejor no pierdas la oportunidad, al fin y al cabo…

Los tránsitos de Mercurio no se producen todos los días

Desde luego que no, la relativa regularidad del movimiento orbital de Mercurio y la Tierra hace que los tránsitos se sucedan también con cierta regularidad en el tiempo. En la era telescópica el primer tránsito fue observado por Pierre Gassendi el 7 de noviembre de 1631, un tránsito que había sido predicho por Johannes Kepler. Desde entonces ha habido 36 tránsitos de Mercurio observables desde algún lugar de la Tierra.

El último visible desde Navarra, que muchos de los aficionados a la astronomía recordaremos, en 2003. La siguiente tabla muestra los tránsitos de Mercurio a lo largo de todo el s XXI, para un observador en Navarra (para el significado de las fases ver el esquema al final)

Año Mes día Visible desde Pamplona (Navarra)
2003 mayo 7 SI (completo)
2006 noviembre 8 NO
2016 mayo 9 SI (completo)
2019 noviembre 11 SI (parcialmente: I , II y máximo)
2032 noviembre 13 SI (parcialmente: máximo, III y IV)
2039 noviembre 7 SI (completo)
2049 mayo 7 SI (completo)
2052 noviembre 9 NO
2062 mayo 10 SI (parcialmente: I y II)
2065 noviembre 11 NO
2078 noviembre 14 SI (completo)
2085 noviembre 8 SI (completo)
2095 mayo 10 SI (parcialmente: I y II)
2098 noviembre 12 SI (parcialmente: máximo, III y IV)

“Transit Predictions by Fred Espenak, NASA/GSFC”

Por su naturaleza se trata de un fenómeno que se repite en el tiempo. Sin embargo las condiciones para tal repetición son bastante exigentes y la periodicidad de estos tránsitos no sigue una regla sencilla. Puede haber dos tránsitos en un periodo de tres años y luego 10 años sin que ocurra ninguno.

En general, los tránsitos de Mercurio siguen un patrón que se repite cada siete siglos, ahí es nada. Tránsitos consecutivos pueden ocurrir separados en el tiempo 3.5, 7, 9.5, 10 ó 13 años. Por ejemplo el periodo de 13 años se produce porque en 13 años terrestres exactamente (bueno, 13 años menos 2  días en realidad) Mercurio orbita el Sol 54 veces.  Ambos planetas vuelven a repetir sus posiciones relativas respecto del Sol y esto hace que se reproduzca la situación de tránsito otra vez. Más aún, cada 46 años terrestres (menos 8 horas aproximadamente) Mercurio completa 191 órbitas. Por ejemplo 2003+46=2049, 2006+46=2052, etc, repitiéndose el tránsito con dicho periodo como podemos ver en la tabla. Por cierto,  si el día de calendario no coincide exactamente no es culpa del ciclo, sino de la cuenta de años bisiestos entre ambos tránsitos.

Mayo no es lo mismo que noviembre

Por otra parte, si se produce el tránsito, éste tiene lugar en unas fechas del calendario muy concretas, como ya explicábamos en una entrada anterior. O bien entre el 7 y 10 de mayo o bien entre el 7 y 14 de noviembre. Ambos grupos de fechas están separados exactamente 6 meses. Los tránsitos de Mercurio en noviembre se producen muy cerca del perihelio, cuando el planeta está próximo al Sol. Por ello las condiciones son más favorables para que pase “por delante”. De hecho el número de tránsitos visibles en noviembre es, como puede comprobarse en la tabla, el doble que en mayo.

En nuestras latitudes, en Navarra en concreto, las condiciones meteorológicas en mayo sona priori más favorables que en noviembre, pero nunca se sabe…

Hay otro aspecto favorece la observación del tránsito cuando éste ocurre en mayo. En esas fechas las distancias entre la Tierra, el Sol y Mercurio hacen que el diámetro aparente de Mercurio sea 12 segundos de arco (1/158 del diámetro aparente del Sol en ese momento) mientras que en los tránsitos que ocurren en noviembre Mercurio tiene un diámetro aparente menor, de 10 segundos de arco  (1/194 del diámetro aparente del Sol). No es mucha diferencia, pero siempre es bienvenida para el que tiene que observarlo.

No siempre podemos ver el tránsito completo

Dependiendo de los detalles orbitales y de las circustancias geográficas del observador es posible que no podamos ver la totalidad del tránsito, e incluso que no podamos ver nada en absoluto.

Fijémonos en la tabla, si nos olvidamos de los 2 tránsitos ya pasados, de los 12 tránsitos restantes del s XXI dos de ellos no seran observables desde Navarra (2051 y 2065) . Del resto solamente 5 serán observables de forma completa, en todas sus fases. El del próximo 9 de mayo de 2016 podremos observarlo de principio a fín. Los dos siguientes serán en noviembre (2019 y 2032) y no podremos verlos completos. El siguiente tránsito completo será en noviembre de 2032 y luego en mayo de 2049…

Como podemos ver, a priori la de este año va a ser la mejor oportunidad en bastante tiempo…. así que mejor no perdérselo.

Ni que decir tiene que nosotros estaremos al pie del cañón, mejor dicho, al pie del telescopio, en todos los tránsitos de este siglo y de los venideros. ¡Que nadie lo dude!

Por cierto, el tránsito de Venus es más llamativo que el de Mercurio, ya que Venus tiene un tamaño aparente mucho mayor. Pero no sería buena idea perderse el tránsito de Mercurio esperando a uno de Venus. El próximo tránsito de Venus tendrá lugar el 11 de diciembre de 2117 y que quieres, nosotros no podemos comprometernos a estar allí. Además no será visible desde Navarra, que tendrá que esperar al 8 de diciembre de 2125 para ver uno, de forma parcial, o al 11 de junio de 2247 para poder ver uno de forma completa.

Tránsito de Mercurio 9 de mayo de 2016.

Tránsito de Mercurio 9 de mayo de 2016.

 

.

Tránsito de Mercurio del 9 de mayo. ¿Por qué se produce?

En un tránsito el planeta, Mercurio en este caso, pasa entre el Sol y nosotros, de forma que lo vemos como un disco negro desplazándose durante varias horas sobre la brillante superficie solar.

Para que esto sea posible el alineamiento del Sol, Mercurio y la Tierra debe ser casi perfecto. Este alinemiento tan perfecto solamente ocurre en ocasiones. Para un astrónomo las condiciones necesarias para este alineamiento son dos:

Mercurio debe estar en conjunción inferior

Mercurio es un planeta interior, es decir, orbita el Sol más cerca que la Tierra. Como está más cerca del Sol, también orbita más rápido (47.9 km/s de media) que la de la Tierra (29.8 km/s de media). A lo largo del tiempo, Tierra y Mercurio van desplazándose en sus órbitas y sus posiciones relativas al Sol van cambiando. Algunas de estas posiciones tienen un interés especial, pero aquí solamente nos interesa una de ellas.

Se dice que Mercurio está en Conjunción cuando Mercurio, Sol y Tierra están alineados. Si Mercurio está entre el Sol y la Tierra se trata de una conjunción inferior (1). Si es el Sol el que está entre ambos planetas, entonces tenemos una Conjunción Superior (2).  Dicho esto, es evidente que para que se produzca un tránsito Mercurio debe estar en conjunción inferior. Por cierto, hay que fijarse que aunque decimos “Mercurio está en conjunción inferior”, relamente la conjunción es un alineamiento de los tres cuerpos (Sol, Mercurio y Tierra)

Posiciones relevantes de un planeta interior visto desde la Tierra (T): (1) Conjunción Inferior, (2) Conjunción Superior, (3) Máxima Elongación Este, (4) Máxima Elongación Oeste. Vista desde el polo norte celeste.

Posiciones relevantes de un planeta interior visto desde la Tierra (T): (1) Conjunción Inferior, (2) Conjunción Superior, (3) Máxima Elongación Este, (4) Máxima Elongación Oeste. Vista desde el polo norte celeste.

Pero estar en conjunción inferior no garantiza que se produzca un tránsito. La imagen de la figura es una imagen en el plano, como  “visto desde arriba”. Esta falta de perspectiva puede hacernos pensar que los tres cuerpos celestes están alineados, aunque no sea así. Esto nos lleva a la segunda condición.

Mercurio debe estar en el nodo ascendente o en el nodo descendente.

El plano que contiene la órbita terrestre se denomina plano de la eclíptica. La órbita de Mercurio yace en un plano inclinado 7° respecto del plano de la eclíptica (figura). Aunque Mercurio esté en conjunción inferior, lo más probable es que se encuentre o bien por encima (como en C) o bien por debajo (como en D) de la eclíptica. En estas condiciones no se produce el tránsito.

Debido a la inclinación de la órbita de Mercurio el alineamiento "perfecto" del Sol, Mercurio y la Tierra solamente es posible cuando Mercurio se encuentra en el nodo ascendente (A) o en el nodo descendente (B)

Debido a la inclinación de la órbita de Mercurio el alineamiento “perfecto” del Sol, Mercurio y la Tierra solamente es posible cuando Mercurio se encuentra en el nodo ascendente (A) o en el nodo descendente (B)

Para que se produzca el tránsito, el casi perfecto alineamiento de los tres cuerpos, Mercurio debe encontrarse en el plano de la eclíptica, o muy, muy cerca de este plano. Esto solamente sucede en los puntos en los que la órbita de Mercurio corta el plano de la eclíptica. Estos puntos se denominan nodos y, como se ve en la figura, son dos:

  • El nodo ascendente (A) o punto donde Mercurio atraviesa el plano de la eclíptica de Sur a Norte (de abajo hacia arriba en la figura)
  • El nodo descendente (B), cuando Mercurio atraviesa el plano de la eclíptica de Norte a Sur (de arriba hacia abajo en la figura)

Estando Mercurio en conjunción inferior y en uno de esos nodos, o muy, muy cerca de ellos, tendremos un tránsito. Que ambas condiciones se cumplan simultáneamente no es tan frecuente. Por ello, en todo el siglo XXI solamente tenemos 14 tránsitos de Mercurio.

Ya para acabar, un interesante detalle. Si el tránsito se produce en el nodo ascendente (A), la Tierra tiene que estár en la correspondiente posición del dibujo. Desde el punto de vista de la Tierra esto corresponde a un momento concreto del año, en noviembre. De forma análoga, si el tránsito sucede en el nodo descendente (B), la Tierra debe estar en la posición del dibujo, lo que corresponde a mayo. Los tránsitos de Mercurio se producen en mayo o en noviembre, en fechas separadas entre sí aproximadamente seis meses.

De los 14 tránsitos del siglo XXI, 5 son en mayo y 9 en noviembre. La diferencia  es debida a que las órbitas de la Tierra, y en especial la de Mercurio, no son circulares, lo que afecta a la geometría del problema favoreciendo las condiciones del tránsito en el nodo ascendente respecto del descendente.

 

.

Así se verá el tránsito de Mercurio del 9 de mayo de 2016

El 9 de mayo, durante toda la tarde, podremos disfrutar del tránsito de Mercurio por delante del Sol. Un tránsito es un fenómeno interesante, que se repite de vez en cuando y que es fruto de las particularidades de las órbitas de Mercurio (nuestro protagonista) y de la Tierra, desde donde observamos.

Ya en nuestro anuncio de este tránsito os presentábamos un resumen de la información básica que quí completamos para una mejor observación del evento.

Las fases del tránsito

Con la ayuda de la figura (más abajo) es fácil identificar las fases del tránsito.

El tránsito comienza cuando el disco del planeta toca el disco solar y comienza a “entrar” en él. A este momento se denomina Contacto I y define el principio del tránsito. Poco a poco el planeta va entrando en el disco solar y solo unos pocos minutos más tarde (algo más de tres minutos) ha entrado completamente, es el Contacto II.

Después el negro disco de Mercurio se paseará por la superficie del Sol, con un poco de suerte quizás pase cerca o incluso por encima de alguna mancha solar, aumentando la espectacularidad del fenómeno. El punto medio de este viaje se denomina Máximo y ocurrirá sobre las 5 de la tarde (hora local en Navarra).

El tránsito finaliza un poco como empezó, cuando el disco de Mercurio toca de nuevo el borde del disco solar por su parte interior (Contacto III) y, tras otros tres minutos aproximadamente, sale completamente (Contacto IV) y desaparece de nuestra vista.

Tabla resumen de las fases del tránsito. TU: Tiempo universal, HL: hora local para Pamplona.

Fase Es decir… TU HL
Ingreso Contacto I Instante en que el disco del planeta es tangente al disco solar por su parte exterior. Define el comienzo del tránsito 11:12:19 13:12:30
Contacto II Instante en el que el disco del planeta es visto por primera vez de forma completa sobre el disco solar. El disco del planeta es tangente al disco solar por su parte interior. 11:15:31 13:15:41
  Máximo Cuando el disco del planeta se encuentra a mitad de su recorrido sobre la superficie del disco solar. 14:57:26 16:56:21
Egreso Contacto III Instante en el que el disco del planeta es visto por última vez de forma completa sobre el disco solar. El disco del planeta es tangente al disco solar por su parte interior. 18:39:14 20:37:21
Contacto IV Instante en que el disco del planeta es tangente al disco solar por su parte exterior. Define el final del tránsito 18:42:26 20:40:33

En la figura se indican las horas precisas de cada contacto, calculadas para Pamplona. Para observadores situados en otras localidades de Navarra no habrá diferencias más allá de uno o dos segundos respecto de éstas.

Tránsito de Mercurio 9 de mayo de 2016.

Tránsito de Mercurio 9 de mayo de 2016.

El camino de Mercurio por delante del Sol

Normalmente la información del tránsito la veremos resumida como en la figura anterior. Se trata de un gráfico obtenido para coordenadas geocéntricas, es decir, como si estuviésemos observando el tránsito desde el centro de la Tierra (y la Tierra fuese transparente). Como podemos ver en la figura el camino de Mercurio es “recto” desde este punto de vista. El ángulo entre la eclíptica (trayectoria del Sol en la esfera celeste) y la trayectoria de Mercurio es 7°. Es la inclinación de la órbita de Mercurio respecto de la órbita terrestre.

Ahora bien, en realidad observamos desde la superficie terrestre y esto modifica el aspecto del camino seguido por Mercurio sobre la superficie solar. Esto es debido a que el tránsito dura muchas horas y en ese periodo, debido a la rotación de la Tierra, cualquier observador va a cambiar su posición de observación notablemente. De hecho, como el eje de rotación está inclinado, nuestro movimiento respecto de la eclíptica es curvo.

Si tomamos como referencia el horizonte, a lo largo del tránsito y debido a la rotación de la Tierra (y de nuestro punto de observación) el camino aparente de Mercurio será bien distinto a una linea recta. Calculado para Pamplona (o cualquier otro punto de Navarra) el camino será como el que se muestra en la siguiente figura:

Movimiento aparente de Mercurio tomando como referencia el horizonte (Para Navarra)

Movimiento aparente de Mercurio tomando como referencia el horizonte (Para Navarra)

Es decir, tras entrar en el disco solar, Mercurio parecerá que sube respecto del Sol, a la vez que avanza. Llegado un momento comenzará a bajar y finalmente saldrá por un punto situado prácticamente en la parte inferior del Sol.

El no tan simple resultado de la combinación de dos movimientos.

Desde la Agrupación Navarra de Astronomía estamos preparando todo un conjunto de actividades con motivo de este tránsito. Entre ellas destacamos.

Ciclo de conferencias “Planetas Próximos, planetas lejanos” en CIVICAN

  • Exoplanetas. ¿Mundos con vida? (viernes 15 de abril, 19:30)
  • Nuevos planetas en el Sistema Solar. Historias de hallazgos, pérdidas e hipótesis (viernes 29 de abril, 19:30)
  • Mercurio, un planeta atípico. Todo sobre el tránsito del 9 de mayo de 2016 (viernes 6 de mayo, 19:30)

Observación pública del tránsito (pronto tendremos los detalles)

Curso de Iniciación a la Astronomía Práctica

 

 

.

Mercurio ¡Qué pasada! Tránsito del 9 de mayo de 2016

Este año Mercurio es protagonista. El lunes 9 de mayo Mercurio pasará por delante de la superficie del Sol, visto desde nuestra perspectiva, ofreciéndonos un espectáculo poco usual que podremos seguir en vivo y en directo aquí, en la Agrupación Navarra de Astronomia. Para un observador en Pamplona el tránsito comenzará a las 13:12 y finalizará a las 20:40. Una primaveral tarde de astronomía.

Mercurio, el protagonista del tránsito del 9 de mayo

Mercurio, nuestro protagonista, va a presidir todos estos eventos

En nuestra web y en las redes sociales iremos contando todos los detalles del tránsito y de nuestras actividades. Como aperitivo aquí tenéis los datos principales del tránsito en coordenadas geocéntricas (para un observador situado en el centro de la Tierra). Los momentos principales el tránsito se especifican en tiempo universal (TU) y en hora local para un observador situado en Pamplona.

Tránsito de Mercurio 9 de mayo de 2016.

Tránsito de Mercurio 9 de mayo de 2016.

Pero esto no será todo, con motivo de este evento estamos preparando una completa campaña de actividades que incluyen.

Ciclo de conferencias “Planetas Próximos, planetas lejanos” en CIVICAN

  • Exoplanetas. ¿Mundos con vida? (viernes 15 de abril, 19:30)
  • Nuevos planetas en el Sistema Solar. Historias de hallazgos, pérdidas e hipótesis (viernes 29 de abril, 19:30)
  • Mercurio, un planeta atípico. Todo sobre el tránsito del 9 de mayo de 2016 (viernes 6 de mayo, 19:30)

Observación pública del tránsito (pronto tendremos los detalles)

Curso de Iniciación a la Astronomía Práctica (se impartirá en mayo, después del tránsito)

 

La información se publicará en nuestra web, Facebook y Twitter (#MercurioQuePasada)

.