Perseidas 2016. ¿Más espectaculares que otros años?

Al menos eso dicen algunas predicciones. Y nosotros, qué vamos a decir, nos gustaría que fuera así. Pero cuando se trata de predicciones sobre lluvias de estrellas fugaces, hay que ir con cautela.

El «padre» de las estrellas fugaces que denominamos Perseidas es el cometa Swift-Tuttle. Un cometa de unos 26 km de diámetro que cada 133 años aproximadamente se acerca al Sol, cruzando la órbita terrestre y dejando en su camino una infinidad de partículas, literalmente desmigadas de su superficie.

Esas partículas tambien orbitan el Sol, pero debido a que se desprenden con una pequeña velocidad, acaban formando una nube muy alargada y dispersa, alrededor de la órbita del cometa. A esta nube muchas veces se le llama «tubo». Cada paso del cometa cerca del Sol deja un tubo.

Cuando la Tierra, al moverse en su órbita, cruza uno de esos tubos, las partículas que lo forman entran en la atmósfera. Debido a su velocidad, la fricción con el aire las quema y dejan un brillante y «fugaz» trazo en el cielo y unos cuantos «Ohhhhs» y «Ahhhhs» en los afortunados observadores (Que no es poco éxito si tenemos en cuenta que su tamaño oscila entre el del grano de arena y el del garbanzo)

Todas estas partículas entran en la atmósfera en la misma dirección, pero por un efecto de perspectiva parecen surgir de un único lugar del cielo. Este «punto» se denomina radiante y en el caso de las Perseidas se encuentra en la constelación de Perseo, de ahí el nombre de esta lluvia de estrellas (muy conocida también como las lágrimas de San Lorenzo)

El radiante de las Perseidas está en la constelación de Perseo

El radiante de las Perseidas está en la constelación de Perseo

La actividad de una lluvia de estrellas fugaces se mide mediante un parametro denominado Tasa Horaria Zenital (THZ) que nos indica el número de meteoros (estrellas fugaces) por hora que veríamos si el radiante estuviese localizado en el Zenit (Cenit), es decir, si tuviéramos el radiante justo en la vertical sobre nuestras cabezas.

El THZ depende de la cantidad de partículas en el «tubo» pero también de la posición del radiante respecto del observador. La posición cenital del radiante es la más favorable para la observación. En cambio, si el radiante esta próximo al horizonte  muchos  meteoros serán invisibles para nosotros, ocultos bajo el horizonte.

Las Perseidas suelen tener un THZ de unos 100 meteoros/hora. En nuestras latitudes el radiante no es cenital. Además una persona no puede observar todo el cielo al mismo tiempo, así que normalmente veremos muchas menos. En la figura se muestra la evolución del THZ en las Perseidas de 2015 donde la posición del máximo es claramente visible.

Evolución de la tasa horaria cenital (THZ) en las Perseidas de 2015

Evolución de la tasa horaria cenital (THZ) en las Perseidas de 2015 (Fuente, IMO)

Y esto nos lleva al asunto principal, las predicciones para este 2016…

Tenemos siempre la idea de que los cuerpos celestes repiten sus órbitas como relojes de precisión, pero no es así.  Los cuerpos pequeños, como cometas, asteroides y también las partículas que forman estos tubos, están sujetos a las continuas perturbaciones gravitatorias de otros cuerpos del Sistema Solar, en especial de Júpiter. Eso hace que los tubos de partículas puedan alterar sus órbitas cuando Júpiter, u otro planeta, les incordia con su presencia.

Pues bien, los expertos en el tema (osea, los frikis de las fugaces) han calculado que la influencia gravitatoria de Júpiter ha modificado las trayectorias de los tubos de partículas que dejó el Swift-Tuttle en los años 1079, 1479 y 1862, acercandolos a la órbita terrestre. Por este motivo se espera una densidad mayor de partículas y, por tanto, un número mayor de estrellas fugaces.

Bien, bien,… pero ¿cuántas?.  Aquí los frikis de las fugaces tienen opiniones diversas, pero todos coinciden en que este año el THZ será mayor. Unos dicen 120, otros 150 y algunos se aventuran a los 200 meteoros por hora. Alguno incluso más….

Pero son predicciones, y son difíciles de hacer. Esperemos que tengan razón y el espectáculo este año sea bueno. Las predicciones sitúan el máximo de actividad bien entrada la noche del 11 al 12 de agosto, pero conviene saber que ya las tenemos aquí hace días,  si bien con menor intensidad. Si queremos verlas, será mejor que busquemos un sitio oscuro, lejos de la ciudad. La luz de la Luna, en cuarto creciente, puede molestar un poco hasta que se oculte. Nuestro consejo: Tumbados en el suelo, sobre una colchoneta y bien abrigados…y a ser posible en grupo, que es más divertido.

Y si uno quiere pedir deseos, ¿porqué no? Yo cuando veo una bien gorda siempre pienso… ¡A ver si la siguiente es mejor! 

 

 

.

Venus y Saturno casi tocándose en el cielo, sábado 9 de enero antes de que salga el Sol

¿Pensabas aprovechar el sábado para quedarte en la cama hasta tarde? ¡Gran error!

Este sábado 9 de enero de 2016, entre las 7 y 8 de la mañana podemos observar en el cielo una hermosa conjunción de los planetas Venus y Saturno. Van a estar realmente juntos, a solo 5’ (5 minutos de grado) uno del otro, es decir, aproximadamente a una distancia equivalente a 1/6 del diámetro de la Luna.

Mirando al sureste, antes del amanecer del 9 de enero de 2016 desde Pamplona. En el gráfico Venus y Saturno aparecen fundidos en un único punto brillante. (Crédito Stellarium)

Mirando al sureste, antes del amanecer del 9 de enero de 2016 desde Pamplona. En el gráfico Venus y Saturno aparecen fundidos en un único punto brillante. (Crédito Stellarium)

Desde luego la proximidad de ambos planetas es solo aparente, en realidad Saturno estará 9 veces más lejos de la Tierra que Venus. Comparado con Saturno, Venus es mucho más pequeño, pero como está más cerca del Sol y también más cerca de nosotros, lo vemos mucho más brillante. Este sábado tendrá un brillo más de cien veces superior al del planeta anillado.

 

Esquema con la posición aproximada de Venus y Saturno durante la conjunción. Venus se encuentra a 1.2 UA de la Tierra y Saturno a 10.8 UA. (No está a escala) (UA: Unidad Astronómica= 150 millones de km)

Esquema con la posición aproximada de Venus y Saturno durante la conjunción. Venus se encuentra a 1.2 UA de la Tierra y Saturno a 10.8 UA. (No está a escala) (UA: Unidad Astronómica= 150 millones de km)

 

Ver ambos planetas a simple vista puede ser un pequeño reto, dada su proximidad y la diferencia de brillo. ¿Podrás distinguirlos?

En cualquier caso, el espectáculo ganará mucho con unos prismáticos o desempolvando ese pequeño telescopio que alguien me regaló (o quizás me acaban de regalar estos días) y nunca me animo a usar. Venus y Saturno aparecerán en el mismo campo visual y podremos observar con detalle el espectáculo.

Con unos prismáticos o un peueño telescopio resolveremos Venus, Saturno y sus anillos así como Titán, su luna más brillante. (Pero seguramente con un tamaño mucho menor que en de este gráfico)

Con unos prismáticos o un peueño telescopio resolveremos Venus, Saturno y sus anillos así como Titán, su luna más brillante.
(Pero seguramente con un tamaño mucho menor que en de este gráfico) (Crédito Stellarium)

Con suficientes aumentos podremos apreciar que Venus nos presenta solamente un 80% de su superficie iluminada (Venus tiene fases como la Luna, pero con sus propias características). Por su parte Saturno nos mostrará sus imponentes anillos que le convierten seguramente en el planeta más bonito de ver con un telescopio. Incluso con equipos modestos podremos ver al menos una de sus lunas, Titán.

Antes de madrugar, quizás deberías comprobar las predicciones meteorológicas para tu localidad, pero si tienes dudas, mejor intentarlo, no sea que te lo pierdas.

Nota. En este artículo las horas de los distintos eventos están calculadas para Pamplona (GMT+1)

 

 

 

.

Las Gemínidas, una estupenda lluvia de estrellas para despedir el año.

Cuando uno piensa en lluvias de estrellas fugaces (meteoros) inmediatamente le viene a la cabeza las Perseidas o lágrimas de San Lorenzo, que tienen lugar en agosto. Sin embargo las Perseidas no son necesariamente la lluvia más espectacular del calendario. Las Gemínidas, que nos visitan todos los años durante la primera quincena de diciembre, son tanto o más llamativas.

“El culpable”

Las Gemínidas están asociadas a los pequeños restos de polvo dejados a lo largo del tiempo por 3200 Phaetón, un asteroide de unos 5 km de diámetro que pertenece a la familia de asteroides Apolo, un pequeño grupo de asteroides con órbitas que los acercan mucho al Sol.

Y sí, hemos dicho asteroide. Normalmente asociamos las estrellas fugaces a restos dejados por cometas, pero la distinción entre cometas y asteroides a veces no esta tan clara. En realidad las características físicas de Phaetón parecen ser las de un núcleo cometario que tras numerosos paseos por las proximidades del Sol ha perdido la mayor parte de sus elementos volátiles y presenta actualmente una actividad muy pequeña. De hecho se han detectado recientemente emisiones de polvo desde su superficie.

Cometa viejo o asteroide, la verdad es que la diferencia es más bien de nombre. No es el único cuerpo del sistema solar que, habiéndole clasificado como asteroide, nos ha sorprendido con un comportamiento cometario cuando ha tenido la oportunidad.

¿Cuándo?

La lluvia de las Gemínidas ocurre todos los años desde el 7 hasta el 17 de diciembre aproximadamente. Este año el máximo de actividad está previsto a las 19:00 del lunes 14 de diciembre (hora local, que corresponde con las 18:00 en Tiempo Universal).

Y, ¿a dónde mirar?

Cuando observamos una lluvia de estrellas fugaces en el cielo, todas ellas parecen surgir de una región muy concreta, casi un punto, de la bóveda celeste. Este punto se denomina radiante y en el caso de las Gemínidas está, como cabría esperar, en la constelación de Géminis. Castor y Pólux, los dos gemelos, son las estrellas más brillantes de esta constelación (Pólux más brillante que Cástor) y el radiante de las Gemínidas está muy cerca de Cástor.

En la figura se muestra la posición el cielo, visto desde cualquier lugar de Navarra, a las 22:00 h (hora local) del 14 de diciembre. Para encontrar a los gemelos y la posición del radiante, la llamativa constelación de Orión y las brillantes Sirio y Capella puede hacernos de guía.

El radiante de las Gemínidas se encuentra próximo a la estrella Cástor, en la constelación de Géminis.

El radiante de las Gemínidas se encuentra próximo a la estrella Cástor, en la constelación de Géminis.

El 14 de diciembre, visto desde Navarra, el radiante aparece por el horizonte Este sobre las 19:00 h. Coincidiendo con la hora del máximo de actividad, de acuerdo con las previsiones. Según avance la noche el radiante irá subiendo, alcanzando los 80o sobre el horizonte a las 3 de la mañana.

Saber la posición del radiante es importante, en primer lugar, porque no es el mejor sitio al que mirar para observar los meteoros. Por efecto de la perspectiva, los meteoros que se observan cerca del radiante suelen mostrar trazos cortos y ser más rápidos. Lo mejor es observar a cierta distancia del radiante, pero tampoco muy lejos, sobre una zona limpia y oscura del cielo. Por ejemplo, la fascinante constelación de Orión y sus alrededores es un buen sitio.

¿Cuántas estrellas puedo ver?

El ritmo de meteoros que produce una lluvia de estrellas se especifica mediante un parámetro llamado THZ (Tasa Horaria Cenital) que representa el número de meteoros que se verían si estuviésemos observando un cielo perfectamente oscuro, sin Luna, y con el radiante colocado en el cénit (sobre la vertical).

Típicamente las Gemínidas tienen un THZ de 120 meteoros/hora, la mayor de todas las lluvias anuales y mayor que el de las Perseidas (THZ=100 meteoros/hora). Hay que saber que si realmente salimos a ver las Gemínidas, o cualquier otra lluvia de estrellas, el número de meteoros que podremos observar es menor que el valor del THZ. Esto es debido entre otros factores a que el radiante no estará en el cénit; a que no podemos ver todo el cielo al mismo tiempo; a que puede haber algo de luz de la Luna (que ocultará los meteoros más débiles), etc. Como valor orientativo, a la hora del máximo, podemos esperar un ritmo de unos 50 meteoros a la hora, de los cuales solamente veremos una parte, ya que no es posible observar todo el cielo al mismo tiempo.

Brillantes y de velocidad media.

En cuanto a la observación de los meteoros: dos características básicas son importantes: brillo y velocidad. En cuanto al brillo, el de las Gemínidas es algo menor que el de las perseidas pero la diferencia no es grande. En cuanto a la velocidad, las Gemínidas entran en la atmósfera a unos 35 km/h, casi la mitad que la velocidad de entrada de las Perseidas (59 km/h), lo que viene a ser una velocidad media. Al ser más lentas, es más fácil observarlas, un punto a su favor.

Este año la Luna se portará bien

Este año la Luna se encuentra en una fase muy favorable para la observación de las Gemínidas. El día 10 es Luna Nueva y el 14 de diciembre, el día del máximo, la Luna todavía está en fase creciente con solo un 12% de su superficie iluminada. Además se pone por el Oeste a las 21:00 horas, sólo dos horas después de que el radiante aparezca por el lado opuesto del cielo, por el Este.

En resumen, la Luna va a interferir muy poco en la observación, casi podríamos decir que nos invita a ver el espectáculo.

¡No te lo pierdas!

Un pequeño ejemplo

Para acabar, os dejo una imagen que tomé en diciembre de 2007. No es de gran calidad pero se aprecia un meteoro cuyo trazo puede extenderse hasta la posición del radiante, situada en la imgaen ligéramente por encima de la estrella Cástor. Para ayudar a la identificación de las constelaciones os dejo una versión anotada de la misma imagen. Casualmente esos días el planeta Marte estaba de paseo por Géminis.

Una gemínida captada en diciembre de 2007. Debido a la duración de la exposición las estrellas aparecen como pequeños trazos, debido al movimiento aparente de la bóbeda celeste. Foto del autor.

Una gemínida captada en diciembre de 2007. Debido a la duración de la exposición las estrellas aparecen como pequeños trazos, debido al movimiento aparente de la bóbeda celeste. Foto del autor.

La misma fotografía anterior donde se identifican las principales constelaciones (amarillo) y las estrellas más brillantes (azul) y el planeta Marte (rojo). El recuadro señala la región de la imagen ampliada. Foto del autor.

La misma fotografía anterior donde se identifican las principales constelaciones (amarillo) y las estrellas más brillantes (azul) y el planeta Marte (rojo). El recuadro señala la región de la imagen ampliada. Foto del autor.

Ampliación de la región en la fotografía anterior, donde aparece el trazo dejado por el meteoro. Foto del autor.

Ampliación de la región recuadrada en blanco en la fotografía anterior, donde aparece el trazo dejado por el meteoro. Foto del autor.

 

.

Ocultación de la estrella Aldebarán por la Luna

Últimamente parece como si la Luna le hubiera cogido el gusto a jugar al escondite. El pasado 28 de septiembre se escabullía en la sombra de la Tierra, regalándonos con un precioso eclipse total . Ahora, el 29 de octubre, y dentro de unas semanas, el 23 de diciembre, será la Luna la que se dedique a ocultar de nuestra vista a la estrella Aldebarán.

Estas dos ocultaciones son las últimas de una serie de 13 ocultaciones de Aldebarán durante este año 2015 y, además, son las únicas visibles desde nuestras latitudes. Ambas ocultaciones se podrán observar desde cualquier lugar de Navarra. Serán visibles a simple vista y con unos prismáticos ganarán en espectacularidad.

Aquí os contamos todo lo necesario para observar estos eventos y no perderse detalle. Conocer además algunos hechos sobre Aldebarán y sobre el fenómeno de la ocultación seguro que ayudan a convertir la observación en una experiencia interesante.

Sobre Aldebarán

Aldebarán (α Tauri) es la estrella más brillante de la constelación zodiacal de Tauro (Toro). De hecho Aldebarán es una de las estrellas más brillantes del cielo, ocupa la posición número 13, y brilla con un hermoso color anaranjado: Aldebarán es una gigante anaranjada.

Gigante desde luego si la comparamos con el Sol. Su diámetro es 45 veces mayor, diámetro que por cierto fue medido por primera vez durante una ocultación por la Luna. Pero no es gigante porque tenga una gran masa, apenas un 13% mayor que la del Sol. Es gigante porque es una estrella hinchada, una estrella que atraviesa las etapas finales de su existencia.

Y es naranja porque su temperatura superficial apenas llega a los 3800 °C, mucho menor que los 5500 °C del Sol. A pesar de que su temperatura es menor y debido a su gran tamaño, radia al espacio una cantidad de energía ingente, su luminosidad (la potencia emitida en forma de luz) es 425 veces mayor que la del Sol. Esto hace que a pesar de estar a unos 65 años luz de distancia de nosotros, brille con fuerza en el cielo nocturno.

Recientemente (mayo de 2015) se han publicado análisis detallados del movimiento de esta estrella que indican la existencia de un planeta orbitando a su alrededor. Se trataría de un planeta con una masa 6 ó 7 veces mayor que la de Júpiter, orbitando a una distancia de Aldebarán equivalente a vez y media la distancia de la Tierra al Sol, con un periodo de 629 días.

Ocultación de estrellas por la Luna.

La Luna, en su danza interminable por el cielo, oculta continuamente estrellas. Normalmente estas estrellas son débiles como para producir un fenómeno observable a simple vista o con unos prismáticos. Sin embargo, de vez en cuando, la Luna oculta alguna de las estrellas más brillantes, dando la oportunidad de poder observar este fenómeno fácilmente, incluso desde la ciudad. Estas estrellas brillantes se encuentran en una estrecha franja del cielo determinada por el movimiento de la Luna y son Aldebarán, Spica, Antares y Regulus a las que hay que añadir Pollux, si bien ésta última es ocultada muy rara vez, debido a la precesión de la órbita lunar. De hecho no lo será en cientos de años.

Estrellas brillantes que pueden ser ocultadas por la Luna

Estrellas brillantes que pueden ser ocultadas por la Luna

Las ocultaciones de Aldebarán del 29 de octubre y del 23 de diciembre.

La Luna no está tan lejos de nosotros como podría parecer. Debido a esto su posición en el cielo no es exactamente la misma para observadores en distintas partes de la superficie terrestre, por ejemplo en diferente latitud. Por este motivo la ocultación solamente es visible desde ciertos lugares, dentro de una franja de forma variable y más bien compleja.

La ocultación de una estrella por la Luna tiene dos momentos importantes. El primero es cuando la estrella desaparece de nuestra vista (Desaparición D)  y el segundo cuando reaparece (Reaparición R). Salvo que la ocultación coincida con la fase de Luna Llena la Luna estará parcialmente iluminada. Desaparición y Reaparción pueden ocurrir tanto por el limbo iluminado como por el limbo oscuro.

La Desaparición es en principio más fácil de observar, pues seguimos la pista a la estrella, Aldebarán, que de repente desaparecerá de nuestra vista. Observar la aparición puede ser algo más difícil, ya que la estrella también aparece de repente. Conviene observar los mapas de la Luna que ponemos luego y tener una idea aproximada de la zona por la que va a aparecer.

Ocultación de Aldebarán del 29 de octubre de 2015

Como se muestra en la figura, esta ocultación será vista desde prácticamente cualquier lugar de Europa, gran parte de Asia y Norte de África. En Navarra la desaparición tendrá lugar poco despues de las 22:30 (hora local) y la reaparición poco después de las 23:30 (Hora local). La hora precisa depende del lugar de observación y la encontraras un poco más abajo.

Región de visibilidad para la ocultación de Aldebarán por la Luna el 29 de octubre de 2015

Región de visibilidad para la ocultación de Aldebarán por la Luna el 29 de octubre de 2015

Ese día la Luna se encontrará justo al Este, mostrando una fase decreciente temprana con el 91% de su cara visible iluminada. Aldebarán desaparecerá (D) por el limbo iluminado de la Luna y reaparecerá (R) por el limbo oscuro, permaneciendo algo más de 1 h oculta tras el disco lunar (en nuestras latitudes).

Trayectoria aparente de Aldebaran durante la ocultación del 29 de octubre, vista desde Pamplona.

Trayectoria aparente de Aldebaran durante la ocultación del 29 de octubre, desde Pamplona.  D: Desaparición, R: Reaparición. Se ha señalado de forma aproximada el limbo lunar.

Como hemos dicho, la hora exacta a la que se producen la Desaparición y Reaparición depende de la localización geográfica exacta. Incluso para una región del tamaño de Navarra existen diferencias entre distintos lugares. En la siguiente tabla podemos ver la hora (siempre Hora Local), con precisión de segundo, a la que comienza y acaba la ocultación para cinco localidades navarras. Hemos escogido Pamplona y otras cuatro poblaciones situadas en los extremos Norte (Bera), Sur (Tudela), Este (Isaba) y Oeste (Alsasua) para poder así apreciar mejor las diferencias en los tiempos y duraciones de las ocultaciones vistas desde estos lugares.

Detalles de la ocultacion de Aldebarán por la Luna el 29 de octubre de 2015

Detalles de la ocultacion de Aldebarán por la Luna el 29 de octubre de 2015

A pesar que la distancia entre estas poblaciones es relativamente pequeña, las diferencias son suficientemente grandes para ser apreciables. Por ejemplo la Desaparición del 29 de octubre se observará en Tudela 11 segundos antes que en Pamplona y casi dos minutos antes que en Isaba. Por otro lado, aunque en Isaba empieza más tarde, la ocultación durará allí más tiempo, 1 hora, 2 minutos y 57 s, unos 27 s más que en Alsasua, la de menor duración de las cinco poblaciones.

Ocultación de Aldebarán del 23 de diciembre de 2015

La región de visibilidad de esta ocultación es muy similar a la de la anterior. De nuevo será visible desde Europa, gran parte de Asia y Norte de África.

Región de visibilidad para la ocultación de Aldebarán por la Luna el 23 de diciembre de 2015

Región de visibilidad para la ocultación de Aldebarán por la Luna el 23 de diciembre de 2015

Ese día la Luna se encontrará al Este, mostrando una fase creciente muy avanzada, con el 96% de su cara visible iluminada. A diferencia que en la anterior, en esta ocultación Aldebarán desaparecerá (D) por el limbo oscuro de la Luna y reaparecerá (R) por el limbo iluminado, permaneciendo también alrededor de 1 h oculta tras el disco lunar (en nuestras latitudes).

Trayectoria aparente de Aldebaran durante la ocultación del 23 de diciembre, vista desde Pamplona.

Trayectoria aparente de Aldebaran durante la ocultación del 23 de diciembre, vista desde Pamplona.

Si comparamos ambas gráficas podemos ver que la trayectoria aparente de Aldebarán por detrás del disco lunar es muy parecida a la del 29 de octubre. Esto hace que la duración de la ocultación sea también muy parecida en ambos casos. No obstante volvemos a tener diferencias, si bien pequeñas, del orden de pocos segundos, en las horas a las que se produce la Desaparición y la Reaparición según el lugar de observación. De las cinco poblaciones estudiadas, será Tudela la que observe el fenómeno en primer lugar y será en Isaba donde la duración sea algo mayor.

Detalles de la ocultacion de Aldebarán por la Luna el 23 de diciembre de 2015

Detalles de la ocultacion de Aldebarán por la Luna el 23 de diciembre de 2015

¿Puedo comprobar las diferencias en el momento preciso en que ocurren estos fenómenos?

Para comprobar las diferencias en la hora exacta de la Desaparción/Reaparición de Aldebarán podríamos apuntar con cuidado la hora exacta a la que observamos el fenómeno. Pero esto puede ser más difícil de lo que parece ya que raramente llevamos los relojes, aunque sean digitales, perfectamente ajustados. La hora de los teléfonos móviles también puede mostrar diferencias apreciables con la hora oficial. No obstante siempre podemos ser cuidadosos y registrar la hora con cuidado.

Una posibilidad que me parece más interesante, y sobre todo divertida, es conectarse por teléfono con un amigo o familiar que esté observando el fenómeno desde otra ciudad. Uno de los dos seguramente observará la ocultación o la reaparición antes que el otro. Cuanto más alejados estén  los observadores entre si el efecto será en general mayor.

Desde luego, si lo intentas, no dejes de contárnoslo, aquí mismo.

No os lo perdáis.

 

.

Eclipse de Sol del 20 de marzo de 2015, visto desde Navarra.

Al hilo del eclipse de Sol del próximo 20 de marzo recordábamos, en una entrada anterior, algunas nociones generales sobre cómo se produce este fenómeno. Pero como Agrupación Navarra de Astronomía / Nafarroako Astronomia Elkartea nos interesa sobre todo cómo se verá el eclipse desde Navarra.

Para ello hemos elaborado el siguiente gráfico donde se muestran las características principales del eclipse, tal y como se verán desde cualquier punto de nuestra comunidad.

Eclipse desde Navarra

El eclipse de Sol del 20 de marzo de 2015 en detalle, tal y como se verá desde Navarra.

En la figura se indica también la altura aproximada del Sol, en grados, medida desde el horizonte. Téngase en cuenta que el horizonte puede estar oculto por montañas o edificios. (Los tamaños del Sol y la Luna se han exagerado para mayor claridad)

La duración total del eclipse es 2h 15’ 15”. Las horas de comienzo, máximo y fín del eclipse corresponden a Pamplona (hora local), pero serán prácticamente las mismas en cualquier otro lugar de Navarra.

El día 20 es el equinoccio de primavera, en fecha tan señalada (astronómicamente hablando) la inclinación de la trayectoria del Sol respecto del horizonte es igual a la colatitud del lugar de observación. En el caso de Pamplona esta inclinación es aproximadamente 47o 12’ . (La colatitud de un lugar se calcula como 90o – la latitud. En el caso de Pamplona la latitud es aproximadamente 42o 48’)

Eclipse de Sol. Parecido a como se verá desde Navarra. Foto de Patxi Martinez. ANA/NAE

Eclipse de Sol, parecido a como se verá desde Navarra. Foto de Patxi Martínez Goñi. ANA/NAE

 

 

.

Eclipse de Sol, 20 de marzo de 2015

El próximo 20 de marzo, a las 23:45 h exactamente (hora local), el invierno dejará paso a la primavera para aquellos que vivimos en el hemisferio norte y el verano dejará paso al otoño para los que viven en el hemisferio sur. Es el equinoccio de marzo, un momento astronómico concreto dictado por los no tan sencillos movimientos de la Tierra en relación con el Sol, y que nosotros identificamos cada año con un día y hora también concretos de nuestro calendario.

Foto de Patxi Martínez Goñi, ANA/NAE

Eclipse de Sol. Foto de Patxi Martínez Goñi, ANA/NAE

Este año el invierno (verano para el hemisferio sur) se despide a lo grande, ni más ni menos que con un eclipse solar. Será ese mismo 20 de marzo, pero por la mañana. Aquellos que por casualidad (¡seguramente no, claro!) se encuentren en una estrecha franja de mar, en los helados mares que rodean el sur de Groenlandia e Islandia y el norte de los países escandinavos, podrán disfrutar del gran espectáculo de un eclipse total. Para los que estaremos en algún sitio de Europa o del norte de África el eclipse será solo parcial, pero no por ello dejará de ser un fenómeno digno de ver.

Pero… ¿Qué es un eclipse de Sol?

En un eclipse de Sol la Luna se interpone entre el Sol y la Tierra y la sombra de la Luna se proyecta sobre la superficie terrestre.

eclipse 1Casualmente el diámetro aparente de la Luna y el Sol es muy parecido, por lo que cuando la Luna pasa por delante del Sol lo tapa completamente o casi completamente. Dado que ni la órbita de la Tierra alrededor del Sol ni la órbita de la Luna alrededor de la Tierra son circulares, las distancias entre ellos varían ligeramente. Debido a esto la Luna puede o no tapar completamente el Sol cuando pasa por delante.

eclipse 2El eclipse de Sol siempre se produce en fase de Luna Nueva, pero no todas las lunas nuevas hay eclipse debido a que el plano de la órbita lunar está inclinado unos 5.1 grados respecto del plano que contiene la órbita de la Tierra (plano de la eclíptica)

eclipse 3La combinación de los ciclos orbitales de la Tierra y la Luna hace que las fechas de los eclipses vayan cambiando de año en año pero a largo plazo los eclipses vuelvan a repetirse aproximadamente en las mismas fechas. Este periodo de repetición de eclipses se llama Ciclo de Saros, equivale a 18 años y 11 días (223 lunaciones) y ya era conocido siglos antes de nuestra era.

 … continuará

.

Una gran lluvia de meteoritos en mayo, regalo del cometa 209P/LINEAR

Una gran lluvia de meteoritos en mayo, regalo del cometa 209P/LINEAR

Ver una estrella fugaz por la noche, en un cielo despejado plagado de estrellas siempre suscita un ¡ooooh! o un “aaaaah”, quizás por lo irrepetible del momento, por lo fugaz de la visión. Esto ha sido así siempre, e independientemente de que sepamos actualmente cuál el origen de este fenómeno su observación no deja de sugerirnos un algo mágico que lo hace muy atractivo.

Las estrellas fugaces son generalmente pequeños granitos rocosos que al entrar a gran velocidad en la atmósfera terrestre se incineran debido el calor generado por la fricción con el aire. Esto crea un trazo luminoso que a veces puede ser muy brillante y de gran tamaño, la estrella fugaz. Aunque pueden verse todo el año (basta observar el cielo estrellado durante un buen rato) existen momentos en los cuales su ritmo de aparición aumenta. Esto es debido a que la Tierra, en su movimiento alrededor del Sol, atraviesa una región donde la densidad de estas pequeñas partículas es mayor, siendo por tanto mayor el número de ellas que entran en la atmósfera. Estas regiones con mayor densidad de partículas están asociadas generalmente a cometas, que al acercarse al Sol y por aumento de la temperatura pierden parte del material, que queda orbitando en órbitas parecidas a las del cometa del que provienen. Así, si la Tierra cruza una de estas regiones donde la densidad de partículas es mayor, entonces el número de estrellas fugaces que veremos también será mayor. Esta situación se repite cada vez que la Tierra cruza la nube de partículas y en muchos casos esto produce lluvias de estrellas periódicas, que se repiten en las mismas fechas del año como las Perseidas en agosto o las Leónidas en noviembre.

Los modelos matemáticos que se usan para describir la producción de partículas y sus órbitas se pueden utilizar para predecir, en su caso, posibles lluvias de estrellas fugaces. Esto es exactamente lo que pasa con el cometa 209P/Linear, un cometa periódico que completa su órbita alrededor del Sol en poco más de 5 años y que en el momento de mayor proximidad al Sol (perihelio) llega a estar algo más cerca que la Tierra. Pues bien, diversos especialistas en este campo (Esko Lyytinen, Mikhail Maslov, Jeremie Vaubaillon) han realizado predicciones independientes, coincidiendo todos ellos en que el 24 de mayo de 2014, entre las 7 y 8 horas UT (entre las 9 y 10 de la mañana según nuestro reloj, es decir hora local) la Tierra atravesará varias de estas nubes, formadas durante los pasos por el perihelio ocurridos entre los años 1880 y 1920. Esta hora concreta, entre las 9 y 10 de la mañana hora local, corresponde al máximo de actividad según las predicciones. Las mismas predicciones indican que el máximo de actividad no durará mucho, algunos minutos, quizás una hora.

Además de la fecha y hora, las predicciones también nos indican donde está situado el radiante. El radiante es el lugar en el cielo, en la esfera celeste, de donde parecen surgir las estrellas fugaces. En realidad las estrellas fugaces que provienen de la misma nube de partículas entran en la atmósfera en la misma dirección, todas paralelas entre sí. Sin embargo debido a un mero efecto de la perspectiva nos parecen surgir de un punto, el radiante. Esto es lo mismo que cuando vemos unas vías de tren (figura). Los raíles son paralelos, pero parecen juntarse en un punto en la lejanía. Pues bien, el radiante está localizado en la constelación de Camelopardalis (La Jirafa, RA=124o, DEC=+79o) relativamente cerca del Polo Norte Celeste, es decir, cerca de la Estrella Polar. Esto significa que el radiante es visible para nuestras latitudes, y está relativamente alto respecto del horizonte, facilitando la observación del fenómeno.

Vías de tren y perspectiva.

Vías de tren y perspectiva.

Radiante

Radiante (click para ampliar)

No están tan seguros de cuál será la actividad de la lluvia de estrellas. Esta actividad se mide con un parámetro denominado THZ (Tasa Horaria Zenital) que indica el número de estrellas fugaces por hora, suponiendo que el radiante se encuentra en el Cénit (punto de la esfera celeste situado exactamente sobre nuestras cabezas). Se está hablando de un THZ=100, es decir 100 meteoros por hora en las mejores condiciones de observación. Esto significa en la práctica menos de un meteoro cada minuto si el radiante no está en el cénit. Algunos (optimistas) dicen que el THZ podría superar los 1000 meteoros por hora, en cuyo caso el fenómeno se catalogaría como tormenta de estrellas, pero es precisamente en el cálculo de la THZ donde las incertidumbres de los modelos son mayores.

Dicho todo esto, ¿Qué posibilidades tenemos de observar esta lluvia de estrellas desde algún lugar de nuestra geografía? Si nos fiamos de las predicciones, nuestra localización no nos coloca en una posición favorable para observar el fenómeno. Los observadores en Norteamérica (EEUU y sur de Canadá) son los que tienen las mejores condiciones, ya que será de noche a la hora del máximo. Para nosotros será ya de día y si la duración del máximo es realmente tan corta como está previsto nos vamos a perder la mayor parte del espectáculo.

Pero no desesperemos, no todo está perdido. Las predicciones son eso, predicciones. Y las predicciones en este campo son muy difíciles y complejas y habrá que esperar a la observación para contrastarlas.

De todo lo dicho se deduce que, si son ciertas las predicciones, el mejor momento para observar este fenómeno desde nuestra geografía es durante las horas previas a la madrugada del día 24 de mayo y realizando la observación desde un lugar con buenas vistas del horizonte norte. En cuanto a qué zona del cielo mirar, cualquier región que se encuentre a unos 20-40 grados del radiante está bien, por ejemplo la Osa Mayor se encuentra bien situada a este respecto.

Carlos Sáenz

El escarabajo pelotero se guía con la Vía Láctea

El escarabajo pelotero se guía con la Vía Láctea

Os paso esta noticia que ha salido hoy en muchos medios de comunicación, y que me parece, cuanto menos, curiosa:

Resulta que el escarabajo pelotero cuando está moviendo su bola de estiercol utiliza la Vía Láctea para orientarse.

Podéis leerla aquí:

http://www.europapress.es/ciencia/noticia-escarabajos-peloteros-usan-via-lactea-orientarse-20130124190329.html

Curioso, ¿Verdad?

Por cierto, que para los antiguos egipcios este animalito ya tenía un sentido cósmico, pues relacionaban el movimiento de su bola con el movimento del Sol en el cielo.

Un saludico.

21416920